Everyone who expects to become at all proficient in the use of the microscope should learn to measure microscopic objects and should learn to form some estimate even without measuring, just as one guesses at the size of larger objects. In any measurement one should note the tube length, which is usually 160 mm. Since the use of the nosepiece is universal, it is convenient to have the length measure 160 mm. when the tube is pushed in. Some companies still make the tube so short that it must be pulled out about 15 mm. to reach the length of 160 mm., even when the nosepiece is in place. Where there is no revolving nosepiece, the drawtube is simply pulled out until the length is 160 mm. Where a nosepiece is used, its height should be measured, and the drawtube should be pushed in a distance equal to the length of the nosepiece. There are in general use two practical methods of measuring microscopic objects, one by means of the ocular micrometer, and the other by means of camera lucida sketches. Measuring with the Ocular Micrometer  A stage micrometer and an ocular micrometer are necessary. A stage micrometer should be ruled in tenths and onehundredths of a millimeter. It does not matter what the spacing in the ocular micrometer may be, except that the lines must be at equal distances from one another. As a matter of fact, the ocular micrometer is generally ruled in tenths of a millimeter, but this ruling is more or less magnified by the lens of the ocular. Place the stage micrometer upon the stage and the ocular micrometer in the tube, and arrange the two sets of rulings so that the first line in the ocular micrometer will coincide with the first line of the stage micrometer, and then find the value of one space in the ocular micrometer. The method of finding this value is shown in the following case in which the tube length was 160 mm., the ocular a Zeiss ocular micrometer 2, and the objective a Leitz 3. In the ocular micrometer, ninetyeight spaces covered just fifteen of the larger spaces of the stage micrometer. Since the stage micrometer is ruled in tenths and one hundredths of a millimeter, the fifteen spaces equal 1.5 mm., or 1,500 (.1 Then ninetyeight spaces of the ocular micrometer equal 1,500 ( and one space in the ocular equals 1/98 of 1,500(, or 15.3(, This value being determined, there is no further use for the stage micrometer. To measure the diameter of a pollen grain put the preparation on the stage, using the same objective and ocular micrometer, and note how many spaces a pollen grain covers. If the pollen grain covers five spaces, its diameter is five times 15.3 ( or 76.5 (. In the same way, the value of a space in the ocular when used with the other objectives should be determined. The values for three or four objectives may be written upon an ordinary slide label and pasted upon the base of the microscope for convenient reference. This method is the best one for measuring spores and for most measurements in taxonomy. Make a scale for each objective. It is not necessary to make scales for all the oculars, but only for the one in most constant use. It is absolutely necessary to note the tube length, length of the bar of the camera mirror and inclination of the camera mirror, and the level at which the scale is made. A variation in any of these details will change the scale. In using the stage micrometer, place the cardboard on the table, and with the aid of the camera lucida sketch the rulings of the micrometer. In Figure 117 note, for example, the scale drawn with Spencer 16 mm. objective, ocular *6. The spaces are drawn from the tenths of a millimeter rulings of the stage micrometer. Therefore each space on the card represents onetenth of a millimeter or 100 (, and the ten spaces shown on the card represent 1 mm., or 1,000(. By measuring with a metric rule the ten spaces upon the card, it is found that the scale is 102 mm. in length. The magnification of any drawing made with the same ocular and objective, under the same conditions, will therefore be 102 diameters. This does not mean that the magnifying power is 102 diameters, for the magnification of this combination is much less. A scale drawn at the level of the stage would show more nearly the magnifying power of the combination, but would still give too large a figure. The exact size of any object which has been sketched with this combination can now be measured by applying the cardboard scale, just as one would measure gross objects with a rule. 

Return to Methods in Plant Histology